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Die Umwandlung von Titanacyclen in
Carbocyclen: ein vorteilhafter Syntheseweg zu
Cyclopentadienolen**
Hirokazu Urabe, Miho Narita und Fumie Sato*

Fünfgliedrige Metallacyclen von Elementen der vierten
Gruppe, wie sie in Gleichung (1) (M�Ti, Zr) dargestellt sind,
sind bekannt und auf einfache Weise zugänglich.[1] Die
Umwandlung dieser Metallacyclen in Carbocyclen, in der
Weise, daû das Metallatom schlieûlich gegen ein Kohlenstoff-
atom ausgetauscht wird, bietet eine attraktive Methode zum
Aufbau fünfgliedriger Kohlenstoffringe. Die Bildung der
entsprechenden Carbonylverbindung durch Umsetzung der
Metallacyclen mit Kohlenmonoxid oder Isocyaniden[1±3] und
die äquivalente Reaktion mit Triphosgen (O�C(OCCl3)2)[4]

sind wohl der typischste und nützlichste Zugang zu dieser
Reaktion [Gl. (1); MLn�ZrCp2, TiCp2, Ti(OiPr)2; CXY�
CO]. Andere Varianten dieser Reaktion sind bemerkenswer-
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terweise weniger breit anwendbar.[5] Wir berichten hier über
einen neuen Zugang zu dieser Umsetzung, der von einem
Titanacyclopentadien ausgeht.

Die Kupplung der Acetylene 2 und 3 mit [(h2-propen)-
Ti(OiPr)2] 1,[6, 7] das auf einfache Weise in situ aus [Ti(OiPr)4]
und iPrMgCl hergestellt wird,[8] führt bei niedrigen Tempe-
raturen zum Titanacyclopentadien 4 (Schema 1).[7] Beim ein-
fachen Aufwärmen des Reaktionsgemisches auf 0 8C fand eine
Tandem-Addition der beiden C-Ti-Bindungen in 4 an die
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Estergruppe im selben Molekül statt,[9, 10] wodurch das Cyclo-
pentadienol 5 in guter Ausbeute erhalten wurde. Durch dieses
einfache Verfahren wurde somit die oben erwähnte Um-
wandlung eines Metallacyclus zum Carbocyclus [Gl. (1)] ohne
weitere Maûnahmen erzielt.

Die Anwendungsbreite dieser Umsetzung wird anhand der
Daten in Tabelle 1 deutlich. Mit einem 1-Silyl-1-alkin wurde
nur ein einziges Regioisomer gebildet, da die Kupplung der
beiden verschiedenen Acetylene mit hoher Regioselektivität

verläuft (Nr. 3 und 5). Obwohl die Reaktion in Gegenwart
von niedervalentem Titan und/oder eines Grignard-Reagens
durchgeführt wird, wurde eine Iodalkyleinheit im Edukt
(Nr. 4 und 5) nicht angegriffen, und die gewünschten Iod-
alkylcyclopentadienole, die geeignete Vorstufen für einen
nachfolgenden Ringschluû sind (siehe unten), wurden ohne
Ausbeuteverluste erhalten. Zusätzlich zur Synthese monocy-
clischer Verbindungen konnten ausgehend von Diinolestern
auch Fünf- und Sechsring-anellierte Cyclopentadienole pro-
blemlos hergestellt werden (Tabelle 2).

Cyclopentadienole[11] sind interessante Zwischenprodukte
für weitere Syntheseschritte, da bis zu fünf Kohlenstoffatome
vollständig funktionalisiert werden können. Im folgenden
werden einige Beispiele vorgestellt. So wurde ein Silylcyclo-
pentadienol mit I2 in Gegenwart von wäûrigem NaHCO3 zum
entsprechenden Ioddien umgesetzt (Schema 2), und Sche-
ma 3 zeigt eine Hydrierung mit nachfolgender Cyclisierung,
wodurch direkt ein bicyclisches Tetrahydrofuran gebildet wird.

Die intramolekulare Carbometallierung[12] zur Dienolein-
heit erwies sich als nützlich für die Herstellung kondensierter
Ringsysteme (siehe Schema 4 und 5). Die Lithiierung des
Iodalkyl-substituierten Substrats zuerst mit nBuLi (OH!
OLi) und dann mit tBuLi (CH2I!CH2Li) führte zur regio-
selektiven Carbolithiierung des Diens und zur Eliminierung
der Hydroxygruppe unter Bildung des bicyclischen Produkts
(Schema 4). Im Falle einer bicyclischen Ausgangsverbindung
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war die obige Carbolithiierung unbefriedigend, doch unter
Zusatz einer katalytischen Menge eines Kupfersalzes verlief
die Reaktion glatt und wiederum mit hoher Regioselektivität
zu einer einzigen tricyclischen Verbindung in hoher Ausbeute
(Schema 5).
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Tabelle 1. Herstellung von Cyclopentadienolen.
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Tabelle 2. Herstellung von Cyclopentadienolen mit kondensierten Rin-
gen.
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Neben dem in Schema 5 dargestellten Syntheseweg kann
auch die zuvor beschriebene, titangesteuerte Cyclisierung in
noch zielgerichteterer Weise zur Herstellung tricyclischer
Verbindungen eingesetzt werden. So führte die von 1 ver-
mittelte Cyclisierung des offenkettigen Diinoats 6 in nur
einem Reaktionsschritt zur tricyclischen Verbindung 7 (Sche-
ma 6). Die Positionen der Hydroxygruppe und der C-C-
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Doppelbindungen im entstehenden Cyclopentadienol 7 sind
anders, als nach den Ergebnissen in Tabelle 1 und 2 zu
erwarten war. Dies ist sehr wahrscheinlich auf eine Isomeri-
sierung vor oder während der Aufarbeitung zurückzuführen.

Die hier beschriebene Reaktion ist ein Beispiel für die
einfache Umwandlung von Titanacyclopentadienen in Cyclo-
pentadienole, deren Synthese auf anderen Wegen sehr lang-
wierig ist. Der Aufbau kondensierter bi- oder tricyclischer
Systeme gelang durch Tandem-Cyclisierung[9] von Bisacety-
len-Substraten und basiert ebenfalls auf der Bildung von
Cyclopentadienolen. Die sehr niedrigen Kosten des Titanrea-
gens sowie die Einfachheit des Laborverfahrens ermutigen zu
weiteren Anwendungen der vorliegenden Methode in der
organischen Synthese.[13]

Experimentelles

Typische Arbeitsvorschrift (Nr. 1 in Tabelle 2): Eine gerührte Lösung von
Pentadeca-3,8-diinylpropionat (30 mg, 0.109 mmol) und [Ti(OiPr)4]
(0.039 mL, 0.131 mmol) in Diethylether (1.5 mL) wurde unter Argon bei
ÿ78 8C mit iPrMgCl (1.54m in Et2O, 0.170 mL, 0.262 mmol) versetzt. Das
Reaktionsgemisch wurde 30 min gerührt. Danach wurde die Lösung in
30 min auf ÿ50 8C erwärmt und 3 h bei dieser Temperatur gehalten.
Anschlieûend wurde die Lösung auf 0 8C erwärmt und weitere 10min
gerührt. Die Reaktion wurde dann durch Zugabe von wäûriger 1n HCl bei
0 8C abgebrochen. Die organische Phase wurde abgetrennt, mit wäûriger
NaHCO3-Lösung gewaschen, über Natriumsulfat getrocknet und zu einem
Öl eingeengt. Das Rohprodukt wurde durch Säulenchromatographie an
Kieselgel (vorbehandelt mit 5 % NEt3 in Hexan; Laufmittel: Diethylether/
Hexan mit einer geringen Menge an NEt3) gereinigt und gab 3-Ethyl-2-
hexyl-4-(2-hydroxyethyl)-1,4-bicyclo[3.3.0]octadien-3-ol (22 mg, 70%) als
farbloses Öl, das durch IR-, 1H- und 13C-NMR-Spektroskopie sowie
Elementaranalyse vollständig charakterisiert wurde.
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